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1. INTRODUCTION

If a plete is moved from the state of rest transversely to 1ts
wldth through a fluid at rest, a small vortex forms at every edge at
the start of the motion; by continual added influx of new pdarts of the
fluld, that vortex becomes larger and grows into the flow. In case the
flow 1s perpendiculer to the plate, the position of the two vortices is
symnetrical at the begimning of the motion of the fluld. In a later
stage of development it 1s, as von Kdrmin has proved, umnstable. "Then
new vortices orlginate alternately at the upper and lower end of the
plate which group themselves behind the plate in a certaln masnner (von
Kérmén's vortex street).

In what follows, we shall treat the initial flow Just described for
a plate perpendicular to the epproaeching flow, where, therefore, flow
direction and plate form a right angle. Since in this case the vortices
are in the positions of reflected images, our investigation is Iimited to
the formation and the growth of one vortex at one plate edge. We visuallze
the plate as suddenly set 1n motion and then moved uniformly at constant
velocity. For a system of axes moved with the plate, the velocity at
Infinlty 1s therefore to remain invarlsble throughout the flow duration.
Moreover, we assume the plate to te laterally extended to infinite length
80 that we deal wilth e plane nonstatlonary flow phenomenon.

S8olutlon of the problem is conslderebly facllitated by disregard of
the friction. This 1s permissible since the friction of most flulds
coming into question 1s very small. Thus we teke &8s & basls en 1deal
fluld where, therefore, the viscoslty 1s zero, and require furthermore
thaet it be homogeneous end incompressible. Tn this fluld the flow
described 1s then to be interpreted as a potentlal flow with free vor-
tices dlstributed over a dlecontlnulty surface, a so-called vortex sheet.
The veloclity field of such a flow iz uniquely determined by the velocity
at infinity and by the form and vortex distribution of this surface.

A solution for the motlon of a fluld sbout a plete, sterting from
the stete of rest, has, so far, been achieved only for infinitely small
angles of atteck. This borderline case has been treated by H. Wagner

" pugbildung elnes Wirbels en der Kente elner Platte," Gdttinger
Dissertation, Ingenieur-Archiv, vol. X, 1939, pp. L11-427.

Ty



5 _ S . - NACA TM 1398

(ref. 1). Here the free vortices lie in a plane vortex sheet which _ _
extends from the treiling edge. The solution of the flow problem consists
in the caleculation of the distribution density of the discontinuity sur-
face. Wegner performed these calculations for accelerated and for uniform
motion of .the plate. For finite engles of attack, as ln our case, the
discontinuity surface forms a strongly curved vortex sheet which obviously
is rolled up into & spirel vortex. Thus, besides the distribution density,
the shape of the dlscontinulty surface also is unknown.

We now meke the following simplification. At the very beginning of
the motion of the fluid, the magnltude of a vortex at the plate edge in
proportion to the width of the plate is still very smail. Consequently
the vortices at both edges still lie outside of their mutuasl interference
domain so that one deals practically with a flow about-a plate of semi-
infinite width. This means a great adyantagg, Since 1nQ unit length
exists which would influence the process, the flow conditions must be
independent of the magnitude of the vortex at the time; The growth of the
vortex therefore conslsts 1n & similar lncrease of 1t. In this connection
the treatises of L. Prandtl (ref. 2) and H. Kaden (refi—3) must be men-
tioned. Prandtl performed a general lnvestligatlon concerning the flow
around a corner for certain laws of acceleration. No solution for the
plate flow resulted from the Prandtl formulation; however, one can derive
from it the laws of similitude. In the treatise mentioned, Prandtl sur-
mises that the rolled-up vortex sheet in its interior may be of the type
of a spiral R = const./¢™ (R and ¢ signify polar coordinates counted
from the center of the spiral, m is & number). Kaden treats the rolling
up of an unsteble discontinuilty surface, unilaterally of infinite length,
into a splral vortex. As we shall see later, Kaden's problem becomes
identlcal with ours for the interlior of the yortex. The same laws of
similitude are valid for both cases. The solution for the vortex core

R = const. /5 3 found by Kaden applies, therefore, also to the interior
of our vortex sheet; the above-mentioned predlction of Prendtl is thereby
confirmed.

The outer part of the discontinulty surface, thus the transitional
region from the splral-shaped vortex core to the plate edge, we procure
with the ald of graphical methods. The solution obtalned is then used
for finding the flow about the plate of finlte width.

2. OUTLINE OF THE METHOD

In this section we shall briefly describe the method by which one
errives at solution of the problem. We shall start frcm the plate of
finite width, and shall then treat the plate Qf infinite—width as a
speclal case.
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In the case of the vortex-free potentiel flow sbout the plate placed
transversely, the veloclty at the edges is known to become infinitely
large; however, under sasctual conditions this is never possible. We must
therefore demend also in this cese that the velocity there slways has
finlte values. We attain this by aessumlng in the fluld so-called
Helmholtz discontinulty surfaces which extend from the plate edges. By
this expression one understands vortex sheets consisting of free vortices
end obeying Helmholtz' laws. In contrast to this 1s the pla:be s wWhich
also 1s a discontinuilty surface but no longer obeys Helwholtz' lews. It
forms a rigld surface and exerts, therefore, pressures on the flow.

The plane in which the flow tekes place will henceforth be designated
ag complex z-plane. The system of coordinstes 1s selected so thet the
origin of the coordinates coincides with the center of the plate and the
plate lies along an imaginary axis. The width of the plate is mede equal
to 2b. The movement of the plate is to take place from the left to the
right, or, which means the same, the flow is to approach the plate from
the positive side. The constant veloclty at infinity - which, with oppo-
slte sign, may also be interpreted as speed of the plate traveling in a
fluld at rest - is to be -v, (fig. 1, left). We conformelly map the
z-plane onto e {-plape, by means of the transformation’ .

¢ = \/ z2 + b2 (1)

with the plate, which represents, of course, a plece of the imsginary
axis in the z-plane, becoming a piece of the real axis in the new plane
(fig. 1, right). The edges z = #ib shift into the zero point ¢ = O;
the point at z =0 transforms to the points $b  on the real {-axis.
Furthermore, in this transformation the region at infinity in the z-plane
goes over, wlthout chenge, into that at infinity in the {-plane. There-
fore the velocltles at infinity in both planes are equal, thus

v(z = ®) = v({ = ) = -v,. As images of the dlscontinuity surfeces we
obtain in the new plane asgeln images which stert from the point ¢ = O.
The new vortex sheets lie symmetricelly to the real axis whereby the
latter becames a streamline so that the imege of the plate also remsins
e streemlinel. The flow in the t-plane corresponding to the plate flow
is composed of the parallel flow end & flow caused by the free vortices
of the discontinuity surfaces. We are now goling to calculate its
velocity fleld.

lFor the case where the vortex sheets in the z-plene no longer
lie symmetrical to the real axis, one must choose instemd of (1) the
transformation into & circle since the real axis in the {-plane then is
no longer a streamline. For our case the selected transformetion 1is
prefereble to that into the circle because the graphical ca.lcula:t:l.ons

become considerebly simpler . _ -
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We denote by QF a varleble point of the vortex sheet in the upper

half plane and coordinate to it a circulation dI'. The corresponding vortex
point of the mirrored surfeace is then given by ;F and has the same

vortex strength, but with opposite sign, thus -4I'. Both vortex points
produce at en arbitrary point { of the plane & velocity the conjugate
complex value of which 1s glven by

ar 1 1
d'V'l( 2«1(; - ;F ; 3 EF)

If one puts dT'= y(l{p)dly wherein y(lp) represents the distribu-
tion density at a point - fp, and dQF e line element of the surface, one

obtalns by integration over ell points of the surfa.ces the velocity
induced by them

!

:
@ =g [ ( - ?-)y(gn-)acr

_gF

( ;F' signifies the terminal point of the vortex sheet.) The perallel

flow has the veloclty -v,. For the total velocity of the superimposed
flow one may now write -

w(t) = 1 1
W) = v+ g [ (g s >7(;F)asF (2)

r

Between the velocitles of both planes there exists the relationship

v(z) = v(L)an (3)

from which one obtains the velocities for the z-plane. The condition
that the velocity should essume finlte values at the plate edges remeins
to be satisfied. As one can. see very quickly, this requirement is ful-
f1lled when the expression (2) for { = O diseppears, because the megni-
fication ratio df/dz becomes infinite for { =0 or 2z = *ib. One
obtains therewlth the condition?

g 1
v(t =0) = -v_ - -21%/; ¥ (11; - i)y(c,r)dgr, =0 ()

2The pert stemming from +v1(¢) becomes real for § =
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which must slweys be sa.tisfied..' It is, however, not sufflclent for deter-
minstion of distributlon density and shape of the discontinuity surface.

As long as the vortices are stlill very small compered to the plate,
the plate mey be regarded as infinitely wlde in comparison with the vor-
tices. For this case, the lack of a flxed comparative length is the
reason that the form of the discontlinulty surface 1s Independent of the
megnitude of the vortex configursastion. The development of the discon-
tinuity surface consists, therefore, initlelly in a similar megnificetlion.
This similer megnification can be fulfilied only Iin the case of a certaln
shape of the discontinulty surface, and of a certain distribution of the
vortlces over it. On the basis of this conditlon, we can therefore cal-
culate the form and vortex distribution for the beginning of the motion.
Starting from this initial condition we can then find, by further obser-
vetlion of the variation with time of the change In form, also the shapes
and. vortex distributions for the lster times when the vortices are mno
longer small compared to the width of the plate.

Before performing the limiting process to the plate of infinite .
width, we choose a new system of coordinates z' which arises from the .
former coordinate system by perallel displecement, end the zero point of
which is shifted to the upper edge (z = +1b). We write

z=2z"+1b (5)

and replace, in eddition, z by
2' =27 or z=23 (6)
H
where H represents a scele unit. Accordingly, equation (1) essumes

the form
¢ = /@ z)2 + 21HZ : (7)

The 1limiting process from the plete of finite wldth to thet of infinite
width (b — =) yields a new trensformation _

2 i}
§=Vainz or Z='ig'T[ (8)
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This 1s the trensformetion of the plane with a slit a.l_b'_ng the negetive
imeginary exis onto the upper half plane of the {-plang¢. If in the
{-plene +v, continues denoting the free-_str'ee.m veloclty, the interpre-

tation of v, as traveling or, respectively‘,' free-stream veloeclty, 1s

lost in the Z-plane since 1n this plene the velocity et infinity
tends —>0. The quantity v, appears in this plane as the veloclty

which prevails in the case of vortex-free fiow at the point Z =---;—' iH.

All other considerations carried out s8¢ far c;oncerning ‘the plate of
finite wildth may be dlrectly transferred to the plate of infinite width.

3. THE INFINITELY WIDE PLATE
(e) Laws of Similitude

By the limiting process from a finitely wide to an infinitely wide
plate which was Just completed, a flow type wasg obteined for which the
successive flow patterns are similar end, accordingly, the circulation
of the vortex and the distributlion density on the vortex sheet are
similerly enlerged for this growth. We shall briefly derive here the
lews which characterize this behavior. (As was remarked in the
Introduction, the lews of similitude could be immediately derived from
the quoted treatise of Prandtl.)

We observe the distence 1 of two points- remaining in similer
position during the similar enlargement of the discontinulty surface and
agsume 1t to be at the time tl of the emount 17 end at the time t2

of the amount 15. We state as the time lew for the énlsrgement

n_ (a\ (9)
wvhere A 1g a number yeét to be determined. TQe law for;_the circulation

' about similerly situsted reglons may be obtained as follows. Since
the free-streem velocity in the {-plane 1s lunvariably Voo, the same veloc-

ity must prevall also for the similar enlargement et similarly located
poin‘bs5. This velocity is composed of the free-stream veloclty v, eand .

of the flelds of the individusal vortex elements. The influence of s

5 In the Z-plene this 1s not the case, sin;:e here (far vortex-free

flow) the velocity 1s constent &t the paint 2 =-% 1H which is fixed

during the simller enlargement, thus does not remain in s_':l'._milar position.
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vortex element A, at the distence Zg from the point_considered, on

the velocity is Af‘/anrlg. If during the growth Al and it are modified,
ALY/ lg, due to the constant wvelocity, elso must be constant. For the
circulation I' ebout simlilerly situated regions of the {-plane, therefore 3

h.h

I'2 Zga

is valid. In the Z-plane the corresponding distances are

2
u_ (M

s \1
2\,

r
Thus -1 becomes in the Z-plane

-]
r ) £,\M2
1 _ / 1_ [t1
s~ E'(ﬁ) (10)

If we deslgnate by V <the velocities which correspond to the law of _
similitude, we obtain for the veloelty V(Z) in the Z-plane which 1s pro-
portionel to [/1

Va Tp/ip dzl 2 -

If we replece in the ratlos sbove the time %; by the time 1 and the
time t, by the time +t, the lews of similitude read

-N/2

1= 180 F=rpM2 oy oy © (12)
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whereln the number A remalns to be determined. For .calculetlion of the
number A we form the velocity of growth of the distence 1

A-1

al
—_—= 1At
T

Since this velocity, like all velocltlies, must vary proportionally
to t"}‘/ 2, there results

A=1=-2

thus

Therewlth the lawe of similitude read

Ve @5 ranglS yavet/s ()

(v) Solution for the Vortex Core

Our tesk now consists in finding a shape for the gpiral which satisfles
these laws. They are the same laws Keden (ref. 3) obtained es a result.
Thus one deals here, too, with a simller problem. In perticular, both prob-
lems become identical for the inner part of the vortex where in both cases
a discontinulty surface consisting of free vortices 1s to be rolled up into
e spiral vortex. It is therefore sufficlent if we refer to Kaden's peper
and here only briefly mention the results.

Iet R and @ Ybe poler coordinates of a system of coordlnates the
zero point of which coincides with the center of the gpiral. For form and
eireulation I of the vortex core bounded by & cirele of the radius R,
Kaden obtained . 3 )

R =(§)2/3’ r = 2x |R (14)
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The circumferentisl veloclity, for radius R 1is

Vu'g%{"",?ﬁ (15)

Thereln t 18 the tlme, counted from the beginning of the motlon. The
quantity X 1is & constent, stlill unknown for the time being. It has the
dimension veloclty times square root of a length. Thus we mey also intro-
duce for it the dimensionless constent

k = (16)

X
N
(c) Solution for the Outer Ioops of the Spiral e .
As was shown before, the behaevlior of the spiral 1s characterized 1in

2/3
the interior, that is, for large sngles @, by R = (ﬂ-’%) / « For small

angles @, In contrast, especlally where the discontinulty surface

adjoins the edge, considersble deviations from this form occur. This
trensitional region cen be found as follows. We visualize the plate as
lying perallel to the straight line @ = 0; thls assumption 1s inslgnifi-
cant for practical purposes since the spiral windings spproach, in the
inward direction, & circuler form. We isolate, furthermore, at one point
the inner part of the spirsl, in which the form is prescribed with-suffi-

2
cient asccuracy by R = (-)9-'- /3. For calculation of the veloclity field

nY
outside of the spiral core, we visualize the latter as replaced by en
isolated vortex at the center of gravity of the circulstion. This 1s
directly permissible since almost clrcular symmetry prevells in the .
interior of the spiral. The dissymmetry caused by the seperation polnt
brings 1t sbout that the center of gravity of the circuletion does not
coincide with the center of the splrel. For the calculstions indica.ted
later on, the separation point is placed at the point ¢ = 2.5x. The
difference between the coordinstes of the spiral center (a, h) and of the
center of gravity (ai, hi) may be calculated, similarly es by Kaden,
(ref. 3) to be spproximstely
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8y - 2=0.,006 Ry and hy - h = 0.031 Ry (17}

if Ry 1s the radius of the core of the spiral.

The outer loop which we now want to calculate, extends from the
separation point (¢ = 2.5x%¢) to the plate edge (¢ = ¢¥). Its shepe and
vortex distribution ¥ as well as the position end circulation ry of

the vortex core we assume, at firet, arbitrarily, with a factor of simili-
tude ¥ common to both quentities and at present not yet determined,
(equations (14) and (15)), and meke therewith the transition into the
t-plane. Therein 7 1s transformed into -

whereas the circulation TI'y remains unchenged. In this maspping plane

(t-plane) the velocitles stemming from the vortex msy be calculated as
the field of the vortex core and the distribution on the outer winding,
likewise thelr mirrored lmeges. By superimposition of the undisturbed
velocity v, there results the velocity fileld v' 1in the {-plane.

First, one ascertains the velocity at the point § = 0. From the condi-
tion that this velocity must be zero (equation (%)) results factor X,
8till undetermined at first, for the circulation TI'y. &nd the distribu-

tion density 7.

In the conformal mepping onto the Z-plane the velocitles v' of
the {-plane are trensformed into the velocities v of the Z-plane,
according to the reletionship

51 4f

v = E

where v and V' signify the conjugete vhlues of the velocities. The
veloclity of the individual vortex concentrated at the core 1s obtalned
by omlssion of the fleld of this vortex. It must, however, be noted
that in the transition from the {-plane to the Z-plane the field of this
vortex is deformed; hence an asdditionsal term appears in the conversion
of the wvelocities. In the {-plane the potential of the core vortex to be
omitted is - - -
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r
1
(o) 2 —— 1N -
x(8) = = t - to)
In the Z-plane the potential of the vortex to be omitted is

2.(2) = % ln(Z - Zo)
r
- oy (2 - ¢3)

= g%% ln(? - gcb + g%z-ln(s +_§C>

In order to calculate the velocity for the Z-plane we must, therefore,

subtract, besides the potential @(t), also the additional potential
r
1

— In(t + to which corresponds a veloclt

51 26+ %) po y

I'y

¥ adaitional = m

in the {-plane or, respectively,

; '+ & -
Vadditional ol (g N go) = (18)

in the Z-plane.

Once one has calculsted the velocities for individual polnts of the
discontinulity surface one resolves them, most advantageously, into normal -
and tengential velocities v, and vy, and plots the latter as functions

of the arc length s. By combination of the function velues one obtains
the velocities pertalning to each point of the vortex sheet; from them
results the motion of the assumed vortex sheet. e
A fluld particle at the point P of the spiral having the velocity
v (fig. 2) moves by the distance PPy = v 1n the unit time. Due to the
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gimiler enlargement, the point P 1s tra_quj’c_‘med during this time into
the similarly located point Po.

The velocity at which the similerly situated points are displaced
is assumed to be V so that the distance 1s PP, = V. To have Py

come to lie on the similarly enlarged spiral, the normsel components

v, &and V, of the two velocities v and V must be equal or

AV, =vy =V =0 (19)

-

We observe the point P on its path to the similerly sltusted
point P, and find that this path does not represent the motion of a
fluid particle. Rather, the fluld flows, with the velocity v-9,
through the point moving from P to Po.

If vp and Vo signify the tangentliel components of the velocities

v and YV, the clrculation in flowing wilth the fluld into the core inside
of P or Py, respectively, during the time At is

Ar'= (vp - Vplyas

Hence there results for the region inside of P, which :Ls 'being similerly
enlarged

V
Bt (VT T)7’

According to the lews of similitude (13), one must heve for a region
being simllerly enlearged -

-2/3
—_— =TI
3 13 3 31:

The two values of dI/dt must agree in order to have the similitude
satisfled, therefore the equation
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AY = (v - Vp)y - == =0 (20)

mst epply. Since the distribution density 1is

V4 =-a—s'
we mey write instead of (20) also
2.2 [(vm Wb - L= 0 (21)

With the aid of the equations (19) end (21) 1t is now possible to find. _
the shepe and vortex distribution of the outer loop. -

We shall perform 'bhe calculation of these quantities for a time +t
X

for which the equation (14) of the spiral core assumes 'I:he simplifled
form

R =& . (21)*
o2/3

We select es the initial form for the entire spiral the form R = H/cpz/ 3
and place it as a first try so thet 1t Joins the plate at the point
9 = @* = x/2 (fig. 3). The break origlnated at the edge is merely a flow
which, as one reedily understands, disappears at the next moment. Except
for the factor ¥, the circuletion .

P = 2x R (22)

1"":r.‘he duplicaetion of the equetion numbers 20 and 21 follows thet of
the original Germsin document.
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is known to us. For the core which we shall asssume to begin at @ = 2.5x,
we have

R = Ri =
(2.50)2
Thus Pi becomes )
a }
Iy = 2% [————— 2
(2.52)2/3 (23)

The distributlion density is

(2k) "

R X .
= % = =
d 3R Os o/ + B \jﬁpg/zm

In figure 4 this distribution density 7y 1is plotted ss a function
of the src length 8. The conformel mepping (8), in combination with the
reflection at the g-~axis, leads to the double spiral indicated in figure 5.
The distribution density in this plene (imsge plene) is represented in
figure 6. When we calculate the velocity et the zero point, we obtain,
on the basis of equation (4), a condltion for the still undetermined
value X. There results - h

% = 2.36\/Bv, or X =2.36

As en example for the determination of the velocity field we shall
here brlefly reproduce the calculation of the veloclty et the center of
gravity. In the {~plane an element of the discontinulty surfece ds'
induces at the center of gravity the veloclty components

avy ' = (8D finy as', avy ' = 280D

cos y ds'
1 2mRg' M1 anR,

L U]
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when Rg' denotes the distence of the element from the center of gravity

and ¥ +the engle of the redius vector from the center of gra:vity to the
element with the é-axis (fig. 5). By integration over s' from the zero
point to the core boundery (¢ = 2.5x, s8' = 2.62 H) end over 'bhe corre-

sponding curve (8') of the image one obtains v§l' and. v,ll In fig-
ure T the values dvg /d.s and. dvn /ds are plotted egainst s8' or

s', respectively. The quantities v§l and vnl' are obtained by cir-

cumscrilbing, with the ald of a planimeter, the cross-hatched areas
bounded by the curves and the gbsclssa axis

t l=
Ve = 0.27v, vﬂl 0

These values represent the Influence of the outer loop of the spiral.
The image of the vortex core causes the velocities

if h' signifies the distence of the center of gravity of the core from
the g-exis. The vortex core itself does not contribute to the velocity
of 1ts own center of gra.vity in the {-plane. However, it must be noted
that, according to the explapations on pp. 10 and 11, iIn the conversion
to the 2-plane a term stemming from the vortex core

appeers.

For the resultent wveloclty one obtalns

vg' == Ve b Vg F Vg, + Vs S -0.k0v,,

' ) =
vy v.ql + vna + VTB . O0.1lve



16 NACA TM 1398

whence there results, by conversion to the Z-plane,

E'V"+ ]
g oon K3

Vx = S - 0029'\"@

g2 + 'ﬂ2

1 H
vy - &V

Vy=ET—2—=- Oole

£- + 1

According to the law of similitude , B
Vy = = 0.3Tv, vy = 0

would have to be valid. The center of gravity thus shows for the
assumptions made, relatively to 1ts required motion, a wrong motion
obllquely downward, toward the plate, with the veloclty components

Avy = vy =V, = 0.08v,

In the same manner the velocities for the peints of the outer winding sare
caelculated. Of course, one has to add a term which represents the influ-
ence of the core; on the other hand, the additionsl term Vs does not

appear here. We find the calculated normel end tengential components
plotted in figures 8a end 8c. As cen be seen from figures 8b and 84,
equations (19) and (21) are not satisfied. In other words, the shape and
vortex distribution assumed deviate from the actual solution. We now
modlfy the position of the core c.g. in the sense of Lvy and Avy and

the shape and vortex distribution of.the outer loop in the sense of the

differences Avy, &nd A %% The form of the splral core" remains

2
unchangedly R =(53 / 3 = —]-E[—-. We now repeet the calculation procedure
v

03/2
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carried out so far. After several steps, the flrst two of which are
represented in figures 9 to 12, one arrives finally at & solution that
satisfies the laws of similitude; 1t is plotted in flgure 135.°

In figure 1k is the radius of the spiral; in figure 15 ite distri-
bution density is plotted as functions of the center angle and of the
arc length s, respectively. _

For more convenient further use, the most lmportant constants
necessery for characterizatlion of the splral vortex have been briefly

complled below. For the solution indicated in figures 135 to 15, the
calculation yields the time

=142 &
V.

the constant

x = 2.228/2y, k=222

the coordinates of the spirel center
a = -0.53H h = -0.22H

the total circuletion of the splral vortex

I' = k.208v,,

For the assumed core boundaery at ¢ = 2.5x the redius of the core
is

Ry = 0.26TH

the circulation of the core

'y = 2.38v,
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For an arbitrery time + one obtains S .

a = -0.4mt2/3 h =-0.165Ht2/3

r = 3.78v /3

4, THE PLATE COF FINITE WIDTH

With the solution found for the plate of infinite width, we know
the initial flow conditions ebout a plate of ‘finite width, where the
vortices are stlill small compared to the plate width. We know that for
this initlal state the successive vortex lmages originaete from one
another by similar enlargement. "However, as soon as the vortices assume
a magnitude which is no longer negligible compered to the plate width,
the presupposition for a similar growth no longer holds true. Yet,
starting from the form and distribution density we found for the still
very smell vortices, we can calculate the variation of this form and

distribution denslty, using the values of Avy, Kl9_}] and A g%[(_-’élﬂ

which now, with growlng vortices, more'and more deviete from 0. We only
mist mseke use of the transformation by means of (1) insteed of the trans-
formation by means of (8). If we start from a known form and distribu-

tion density at a time 1., we obtaln the deviation of the form and dis-

tribution density from those which would result for similer enlargement
according to the time lews (13), et the time t, as being

t2
An = ?Z? Avpdt and Ay = JF
1

. B
2 A% at
ty ot
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The graphicel determinstion of the required quantitles is greatly
hampered by the fact that the vortices are at the beginning very small
and later very large. We can avold thls difficulty by visuelizlng the
figure, at every instant, enlarged or reduced in such & manner that the
vortex would alwsys remeln the same 1f 1t would keep on growlng eccording
to the lews of similitude thet are velld for the beglnning. The flgure
in actual slze we denote as figure I and the quentities valid for it by
the subscript I, the enlarged figure es filgure II asnd the corresponding
quentities by the subscript II. At the initisl stage, the enlarged vor-
tex is to sgree precisely wilth the one celculated for the plate of
infinite width in the precedlng section. Iet us call the ratio of mag-
nification In every cagse €. If we reduce in the magnified flgure all
velocltles similtaneously at sulteble polnts In the proportion l/\[e- ’

the circulations I' ere msgnified in the proportion Ve. The distribu-
tion densities 7 eare reduced in the proportion l/F T

For the potentlel flow ebout the plate of the width 2b 1n the
plane I there results in the nelghborhood of the edge the wveloclty

a
®y2
\/b-y

For the plate of infinite length treated in section > the corresponding
veloclty wes : Ca—-

'V'I=

(2_'_5)

_VLE' | (255
v—\/F . (26)

wherein y' =b -y signifies the dlstance from the edge of the plate.
In order to obteiln for the beginning of the motion the seme conditions
a8 for the flow ebout the plete of infinite width treated before, we
select the width of the plate 2b in such a msnner that

b=H

For the egbove stlpuletion, exactly the veloeclty v, prevalls In the

megnified figure, while € 1s stlill very large, at a polnt at a distance

of 'b/2 from the edge. In the case of the plate of infinite length B
treeated before, this polnt ley et a distance H/2 from the edge. Since '
we equated b = H, we obtain in the magnified flgure preclsely the flow
treated in section 3.
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According to equation (14), for the growing vor'bex core of the
plate of infinite width

/
_ (:%)2 3

Since at the initial stage the flow ebout the edge of the plate of the.
finite width 2b = 2H coincides with the flow ebout the edge of the
plate of Infinite width, this formula epplies also to the initial stage
in the case of a plate of finite width. By means of the magnification
by the factor ¢, this initial vortex 1s to be transformed into the flow

b
treseted for which R = = . Thus necessarl
—5-—2 7—2 3 1y

/

Hence there results

- (’%)2/ > /3 | (27)

Since in the plene I, at the beginning of the motion, the circulations

I'I grow, according to (13), with tl/ 5 ;, we obtain in the plane II, where

-they appear megnified In the proportion \/—, constant c:chuJ.a.‘bionB and
constant distribution densities.

At the beginning of the motion € = «. The plate edges lle in the
plene II at an infinite distence from one asnother so that we actuslly
heve the case of the plate of infinite width.  In time, bhowever, e
attains smaller finite values, and we obtain in the plane II elso a plate
of finite width. Therewith the velocitles become different, and we
obtaln deviatlions from the similar megnification. In order to calculate
the velocities in the plane II, we trensform this zrr-Plene onto a

{-plane which we shall chara.c‘cerize by 'bhe subscript III, by means of the
funetion

2 4 (c—:‘n)2

frrz= —;Lg——— : (28)
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For very lerge €  this mepping is transformed into the infinite plate
according to (8) in the neighborhood of the edge. For finlte e,
however, other shapes result for the mspped vortices, and that is -the
very reason which causes the modificetlons of the veloclties and there-
with the deviatlions fram simller vortex growth.

As soon as, due to thils devliation, the form and dlstribution density
of the vortlces have chenged with respect to the similar growth, this

also conbtributes to the variation of the velocities. Since, however, ~

form end distribution density change, at first, only very slowly compared
to the similer growth, one may In the plene IT assume the form and dlstri-
bution density as constant in turn through a large time interval, and
need consider In this time interval only the modificetion of the trans-
formation in the plane IIT, due to the modificatlon of the value €.

For such a time Interval t; to tp (the first starts with +t = 0),

one calculates for several intermediste times the normal end tangential
components Varg and vtII of the velocities of the plane II with the

aid of the transformetion omto the plane IIT in the seme menner as in the
case of the plate of infinite length. One forms furthermore the differ-

ences with respect to the velocities of the similar magnification’ V'?[i

and vtI.I and obteins then by transfer to the plane I the values (19)

AvnI = J_GAVD'II = F (vnII - vnII) . (29)

and corresponding to (21)

A—E == -V -3 :
ot dsy [(VTI TI) 7]] 3t

-e a:;IlgwEII - VTI:)\/Ebii Jé] ) 7ﬁ;j§

If we, finally, replace in the last term t by (‘n/e)3/2 n/% (equation
(27)), we obtain

97 d X7
AL - &2 i -V + I 0
T e ) o Go
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By graphical integration then results the displacement An of the points
of the vortex sheet at right angles to it, end the modificetion of the
distributlon density compared to the similer magnification in the

plane I as

& .
Any = [ 2 Ay dt - (31)
’
to
Ay, = f A(E’l) at (32)
tl 3t :

and the modificetlion of form and distribution density'ih the plesne II _
as -

AnrT = €2AnI ) ) (33)
by, = —= . (34)

= Ve

Therein €5 1is the value of the magnificatiqn ratio € at the time to.

Due t6 the finite megnitude of the vortices cdﬁpa?gd with the plate

o)
width, Av 71T

Ny
that in the {-plene at the zero point the velocity must-be zero, will

no longer be satisfied. In the ascertalmment of the vortex for the plate
of infinite width we have been able to fulfill this condition by suitable
definition of an as yet undetermined factor for the clrculation. Due

to this condition we found the quantity X or k, respectively. For
the further. development of the vortex, form and vortex Btrength and
their varistion with time are fixed. Only the strength_of the vortices
shed at the plate edge is still undetermined since we can here not form
the differentiel quotient J/ds occurring in (30). We must select it
in such a manner that equation (4) is satisfied. We obtain therefore an
additional modification of the distributlon density starting from the
plate edge which gradually is carried into the vortex by the flow. It

£0 and A

* o; also, the condition__()-'-):
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is true that 1t was shown in the quantitative calculation that the devia-
tions from the condition (4) are extremely small, because the variation
of the conformal representation [(1)] with e results in a positive
velocity, whereas the modification of the form and distribution demsity
according to (33) and (34) results in a negative velocity &t the

point § = O and the two almost cancel one another.

The celculation was cerrled out for the intervals €=« to €= 3,
€e=3 to e=2,and €e=2 to €= 1l. The results are complled in the
figures 16 to 19. True to expectation, the circulation ' increases
more slowly with time then 1t does according to the solution for the
plate of infinite width (initial state, fig. 19). In the final state it
would perhepse gpproach e constant velue which corresponds to & steady
state of flow. However, according to experience the symmetrical vortex
configuration becomes unstable from a certaln magnitude onward, so thet
thls steady state is not attalned.

5. SIMMARY

The flow sbout the plate of Infinlte wldih may be represented as a
potentlal flow with dlscontinuity surfaces which extend from the plate
edges. For prescribed form and vortex distribution of the discontinuity
surfaces, the veloclity fleld may be calculated by means of a conformsl
representation. One condition is that the veloclity at the plate edges
must be finite. However, 1t is not sufficlent for determination of the
form and vortex distribution of the surface. However, on the basis of
a silmllitude requirement one succeeds in finding a solution of thise
problem for the plate of infinite width which is correct for the very ~
beginning of the motion of the fluid. Starting from this solution, the
further development of the vortex distribution and shepe of the surface
are observed 1n the case of a plate of f£inite wildth.

Finally, I should like to express my specilal gratlitude to
Professor Betz for hls suggestion of this investigatlon end his active

support in cerrylng 1t out.

Translated by Mery L. Mahler
Netional Advisory Committee
for Aeronautics
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Figure 1.~ Plate with vortex sheets starting from the edges (left), and
conformal representation of the flow (right).

Figure 2.- Actual velocity v of a fluld particle and displacement velo-
city V corresponding to the simllar magnification.
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Figure 3.- Spiral according to the equation R = H/fpz/ 3,
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Figure 4.- Distribution density for the region #/2 =9 = 2.6m pertaining
to the spiral R = H/p /3,
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Figure 5.- The spiral and its Image in the ¢plane.

27



28 NACA TM 1398

A—”Ks') HY2
04
/ N

03 /

0.2 /

ot|—1-
S
H

0 05 1.0 1.5 20 25

Figure 6.- Distribution density 7(s’) of the splral in the ¢-plane.
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Figure 7.- Influence of the distribution on the velocity components
Ve and v,rl of the vortex center of gravity.
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Figure 8,- The quantities which are decisive for the variation of form
and distribution density for the initlal spiral.
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Figure 9.- First correction of the form.
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Figure 10.- Distribution density and decisive quantities after the first
' correction,
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Figure 11.- Second correction of the form.
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Figure 12.- Distribution density and decisive quantities after the
second correction.
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Figure 13.- Final form of the spiral for the plate of infinite width.
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Figure 14.~ Relation between the radius R and the angle ¢ for the
final form and for the initial spiraJ.
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Figure 15.- Final distribution density In the case of the plate of

infinite width,
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Fgure 16.- Variation of the form of the spiral with time In the case of
the plate of finite width (reduced to constant vortex magnitude).
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Figure 17.- Variation of the form of the spiral with time in the case of
the plate of finite width (actual scale).
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Figure 18.- Variation of the distribution density with time.
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Figure 19.- Growth of the circulation with time,
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